The realization space is [1 1 0 x1^2 - x1 0 1 1 0 x1^2 - x1 x1 - 1 x1] [1 0 1 -2*x1^2 + 2*x1 - 1 0 1 0 2*x1 - 1 -2*x1^2 + 2*x1 - 1 -x1 2*x1^2 - 2*x1 + 1] [0 0 0 0 1 1 1 x1 -x1^2 -x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (12*x1^12 - 68*x1^11 + 170*x1^10 - 246*x1^9 + 226*x1^8 - 135*x1^7 + 51*x1^6 - 11*x1^5 + x1^4) avoiding the zero loci of the polynomials RingElem[x1, 2*x1 - 1, x1 - 1, 3*x1^3 - 5*x1^2 + 4*x1 - 1, x1^2 - x1 + 1, 2*x1^2 - 2*x1 + 1, 3*x1^2 - 3*x1 + 1, 3*x1 - 1, 2, 4*x1^2 - 3*x1 + 1]